Peripheral Sensory Neurons Expressing Melanopsin Respond to Light
نویسندگان
چکیده
The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior.
منابع مشابه
Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod-cone inputs.
The circadian oscillator in the suprachiasmatic nucleus (SCN) is entrained to the environmental light/dark cycle through photic information conveyed from the retina. The vast majority of projections to the SCN arise from melanopsin-expressing ganglion cells that are intrinsically light sensitive and that receive inputs from both rods and cones. To investigate the relative contributions of the d...
متن کاملMelanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System
Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pat...
متن کاملMelanopsin Mediates Retrograde Visual Signaling in the Retina
The canonical flow of visual signals proceeds from outer to inner retina (photoreceptors → bipolar cells → ganglion cells). However, melanopsin-expressing ganglion cells are photosensitive and functional sustained light signaling to retinal dopaminergic interneurons persists in the absence of rods and cones. Here we show that the sustained-type light response of retinal dopamine neurons require...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملMelanopsin-Derived Visual Responses under Light Adapted Conditions in the Mouse dLGN
A direct projection from melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) reaches the primary visual thalamus (dorsal lateral geniculate nucleus; dLGN). The significance of this melanopsin input to the visual system is only recently being investigated. One unresolved question is the degree to which neurons in the dLGN could use melanopsin to track dynamic chang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016